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ABSTRACT

This study critically reviews life cycle assessment (LCA) studies on next-generation secondary batteries (rechargeable bat-
tery) for electric vehicle (EV) applications, focusing on lithium-ion batteries (LIBs) with silicon nanowire/nanotube
(SINW/SINT) anodes, all-solid-state batteries (ASSBs), and lithium—sulfur (Li-S) batteries. The reviewed work is analyzed
in terms of how the goal and scope of the LCA are defined, how life cycle inventories (LCIs) are constructed, and how
the environmental impacts are assessed. The energy-intensive manufacturing process of next-generation secondary batteries
is a factor in their higher environmental impact compared to conventional LIB manufacturing processes. This suggests that
the superiority of LCI can vary depending on the method used to construct the LCI and the assumptions surrounding the
manufacturing process. Moreover, most LCA works of these emerging battery systems employ heterogeneous functional
units, rely on laboratory-scale studies at low technology readiness levels using bottom-up inventory modelling, and are re-
stricted to cradle-to-gate system boundaries. These characteristics hinder a consistent comparison of environmental impacts
across battery chemistries, resulting in substantial uncertainty due to limited data quality. Based on these findings, the paper
underlines the need for partial standardization of functional units and system boundaries, systematic inclusion of the use
phase, and more rigorous sensitivity and scenario analyses in LCAs of next-generation secondary batteries. It further pro-
poses that future studies adopt top-down LCI construction approaches in which desirable LCA outcomes are first set as tar-
gets, and the process conditions and LCI datasets required to meet these targets are subsequently inferred in a backward
manner.

Keywords: life cycle assessment (LCA), electric vehicles (EVs), silicon nanowire/nanotube anodes (SINW/SINT anodes),
all-solid-state batteries (ASSBs), lithium—sulfur batteries (Li-S batteries)
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Fig. 2. Number of previous publications on LCA of
next—generation batteries by year.

B ASSB (All-solid-state battery)

B SIB (Sodium-on battery)

O Li-S (Lithium—sulfur battery)

m Li-02 (Lithium—oxygen battery)

B Si-based anode LIB (Silicon-anode lithium-on
battery)

o Mg (Magnesium rechargeable battery)

B Sodium/nickel chioride baffery (Sodium/nickel
chloride battery)

B MNaS (Sodium—sulfur battery)

B PIB (Potassium-ion battery)

B Li-metal (Lithium-metal battery)

B MgS (Magnesium—sulfur battery)

Fig. 1. Distribution of LCA studies categorized by battery type in our surveybetween 2006 and 2024. Search
keywords (Web of Science & Google Scholar): ‘Sodium ion battery LCA’, ‘Na ion battery LCA’, ‘Potassium
ion battery LCA’, ‘K ion battery LCA’, ‘Silicon battery LCA’, ‘SINW LCA’, ‘SiNT LCA’, LiS battery LCA’,
‘lithium sulfur battery LCA’, ‘Li-air LCA’, ‘LiO; LCA’, ‘Lithium metal LCA’, ‘Ca ion battery LCA’, ‘Calcium ion
battery LCA’, ‘Mg ion battery LCA’, ‘Magnesium ion battery LCA’, Zn ion battery LCA’, ‘Zinc ion battery
LCA’, ‘Al ion battery LCA’, ‘Aluminum ion battery LCA’, ‘Solid state battery LCA’, ‘Anode free battery LCA’,
‘Bipolar battery LCA', ‘Redox flow battery LCA’, ‘Next generation battery LCA’.
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Fig. 3. Schematic illustration of an ASSB.
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Fig. 4. Working principle of a Li-S battery.

29, A AlA Aol 509 EoR A=, @A uird=gat
Sug 25 FgAolek: W7k E A Qi gEe A AlA
Ardgo] 19 1,5005F & <2o0]7] whizell 2l&at HlwA] &2
APAIER wiE ] AbdoflA b2l Edol=tal & 4= QITH36].

T8y Aol AE anet 22 7ed ZAER
5l 242121 A83lolli= ofgfZo] UtH37]. HE-2HA 5
A oA whEolRl SlEET o5 (LisS,) 9] 85 Al
OJZFAA] o] ofz] A7} EA 4= e o|F Ee|idn}t
o]= HE f(polysulfide shuttle effect)tl S} o]o] w2k,
oRPAR] AHAH9] &5 A, BFE o= EH &4, AllE 48
Asl7} gttt wEbA Eeduie|=rt 2lF S RESSHA
U= Aofsh= A A5 FAO vl S835HH38, 39].

ZEAOE B2 Apglo] FHolaL Hlgo] W AFRo] YA
Tk 71& FEALE tE v 542 7HAERE LCA S
A HE5-2 HiEge = 2419 ¥k S48 54 Aolz <l
df 7]& LIBo= oFE 893 932 YErd 4= 9lou=, A
e B7PF 8-

3. AMICH OJARHX|S| LCA S+AR &4

& Hofre oA LCA I 5 542 AElskal A
Al oIRRIR| (A} SINW/SINT =4 7|%F LIB, a4
oARIA], BlE-3 oA AYATE LCAS 7 A
(&4 9 9 A%, LCT 24, sjAd)ol w=t BAsigic 2+
SAelA 71 LIBoF BlusiA A ol A7 7= &
3t olerE HERIIT

3.1 EVE OIXRHXIe| LCA

Fig. 5= LIBY] A AAH] HAS HojEr) At -
Z A= AAH AAR EH F2 Cradle-to-gate 99, =

)



AAEAE A olAaxe) ATpg ok 2

—_— e e e e e e e e e e e e e e e e e = = = =

14 \
I I” & I
I 1 |
1 i Raw material ) 1
I extraction and Metals Chemicals Energy Water | Minerals e T
1 i Pre-processing ) 1
! | 1
1 L 1
L 1
| - @ 7 N = N I
! Component Cathode gctive Anode a;tive Bine St 1
| manufacturing material material 1
| < 4 |
1 = 5 e B 1
! —> Manufacture Cell . Cathode Anode Separator Electrolyte 1
1 manufacturing L ]
| |
! D ([ - 7 @ |
I Svslena Cosling Housing BMS Battery cell 1
1 assembly system L |
I |
| |
I I
: Battery Pack !
1

1 |
1 1
| I
l 1
/

———-P‘ Distribution

Use phase

Fig. b. Major life-cycle stages for vehicle and stationary batteries.

oZFAA| Y] g AE — A - B A — A - = Azt
S #3322 LIBY LCAA A= AJAkt wielg] A
27} Cradle-to-gate O|UX| AH|F] BiFES AX|gicial B
5k, o|A] AH[F A= AFAF IkWhg 58 MT H 9]
of sigoh= AR LA QUTH40]. Y= A= D 44 Bt
WA= oA = 24 5N, Co, Mn, Li, Fe, P 5)°]
8 SIS AAolH, o2 3= (SIS B
g, HAAAL Cu) AR 5ol Utk thalE Al - iE - o
Az e A= I AR A5 AR A 21 2 A 9y
4, B 207 Qlef EZ of|A|7} ARETH41].

Cradle-to-grave 7ZA|oA= ARETEAIRL H7| - 8714
235, AREHAIA EVEC R T o HiEZe] 2k,
FYEE 3 - Wl 5 g7t o odsit A EiE
29] At 2 24 240 wet IA EER7] HiEel
AA| HlofEl7t githH ¥igo] offt. &g 9A E3t, e
Aot won, 34y Fko] A4 Aiks duiRkE diAls)
A (credit) ESHAIEE A7o|tH40].

32 2% U #el Mo

AAEA B9 A/ TEE FHAOR 4] wRo] F
9 % PAIFS WY vk Tt WIS 7
Boke oUA U H71S AR Tl WASH:

2 =] TeElolop STk, URHHOE, Al Wl

A THJSE SRS HiEtHAA AR ER, oA
AYShe 2AVIAE A7IREAI) T 2ATRA HiES]
EgFstolof gttt [42]. webA H7IAREARE oA A]9] LCA
Z840]| QlojA] AREHAIQ] 3t o RS YASfof gt

1y A o]XHR|S] R T|E sk, A TlolH
o] 7A 59 o= ARETAE ARkl LCA 38 XY
Sz Zlo] kAol ol2jet APAT=2 AFH AEe A
A 35 Bl = gAINE ARG A dA o HS5te] 2
ol E HESHAY & Ao E11F 7]4to] = 3
ol oot Uk

2 AFollA HERL 24H O] A o]ZHA] LCA AF =
e ORA 5, AlaEl A, 715 T, SRR B
ol Table 13} o] QOFFTt. APA|TH ©]x2]9] LCASIA
= 715 (functional unit, FU)Q} AJAHl FA9] A7t A
T 543 7|& &= 1 HolE 7R8Adol weF geRd, 2
¥} Bl w9] S]] AAA] Y IRk Fig. 65 HH 0]
AR FUE dRbd o= A 170, 9 171, -85 1kWh, Hgo]
A 1kWh 5 tiefsto] ZF At 1t A3t v|wE ofHA g
A 0 2 EVol Soi7k= o T9jo] & 1kWh7F ARSE]H
AL GAIE Ebole AS F3AE 1km A oyA|
IkWhg &83l= 39 AUtk

115



Hd9, oA, FERL

Zdx Ak

A, A&E, =t

Table 1. Summary of 24 publications on LCA of next—generation secondary batteries

Author
(Publication year)

Battery type
(Cathode/Anode/Electrolyte)

System boundary  Functional unit

Primary
data

Impact indicator

Accardo et al. (2024)

[43] NCM622/SiNWs/LiPF6 Cradle-to-gate
Wang et al. (2022)[44] Ncs?ﬁll]}sl/ﬁii\gls’ Cradle-to-Grave
Wang et al. (2019) [45] NCSKITISI/LSQ?S’ Cradle-to-gate
Deng et al. (2018) [46] NCM111/SiNTs/LiPF6 Cradle-to-Grave
Wu et al. (2018) [47] NCMI111/SiNWs/LiPF6 Cradle-to-gate
Li et al. (2014) [14] NCM111/SiNWs/LiPF6  Cradle-to-Grave

Li et al. (2013) [48] Lithium Foil/SINWs/LiPF6 Cradle-to-Grave

Troy et al. (2016) [49] LCO-LLZO/Li-metal/ LLZO Cradle-to-gate

Zhang CESS;' (2022) " \MCS11/ Li-metal/ LATP  Cradle-to-gate
NMC811/
Li-metal/LiGPS,LiPS

Rietdorf et al. (2022)

51] Cradle-to-Grave

MO, LCO, NCM, LVO,
SVO, NCA, LNMO, CuMn
/ C-Li / LiPON

Lastoskie and Dai
(2015) [52]

Cradle-to-gate,
Well-to-Wheel

NMC-LATP/ Li-metal/
LLZO+LATP

Schreiber et al. (2023)

(53] Cradle-to-gate

Liu et al. (2024) [54] NMC/ Li-metal/ LLZO Cradle-to-gate

Batuecas et al. (2024)

[55] FePO4/Na-metal/ NASICON

Cradle-to-gate

Smith et al. (2021)[56] NMC622/ Li-metal/ LLZTO Cradle-to-gate

Keshavarzmoha et al.

(2018)(57] FeSy/ Li-metal/ Li:S—P.Ss

Cradle-to-gate

Deng et al. (2017)[58] GSC&GO/ Li-metal/ LiTFSI Cradle-to-Grave

1 kWh (cell)

1 km, 1 kWh (pack)

1 kg (anode), 1
kWh (pack)

1 km

1 kg (anode), 1
kWh (pack), 1 kWh
(energy delivered)

1 km

1 km

1 cell

1 cell

1 kWh (cell)

1 Wh (cell)

1 cell

1 kg, 1 kWh (pack)

1 cell

50 MJ (energy
delivered)/ 1 kg
(cell)

80 kWh (pack)

1 km

1

1,2

1,2

1,2

1,2

1,2

1,2

GWP, AP, FEP, FETP,
ADP-fossil, ADP-elements
GWP, FDP, FETP, FEP, HTP,
METP, MEP, MDP, ODP,
PMFP, POFP, TAP, TETP
GWP, FDP, FETP, FEP, HTP,
METP, MEP, MDP, ODP,
PMFP, POFP, TAP, TETP
GWP, FDP, FETP, FEP, HTP,
METP, MEP, MDP, ODP,
PMFP, POFP, TAP, TETP

FDP, GWP, TAP, HTP, FEP,
PMFP, MDP, MEP

HTP, TETP, POFP, ODP, EP,
AP, GWP, ADP
GWP, AP, EP, ODP
CED, GWP, ODP, POCP, AP,
PMFP, IR, EP, FETP, HTP-c,
HTP-nc, RDP
GWP, AP, ODP, POFP, PMFP,
EP, FETP, HTP-c, HTP-nc,
FDP
WS, LU, MDP, FDP, AP, TEP,
MEP, FEP, FETP, IR, POCP,
ODP, HTP-nc, HTP-c, GWP

CED, GWP, HTP, PMFP, FEP,
POFP, WDP, MDP

GWP, PMFP, FDP, WS, FETP,
FEP, HTP-c, HTP-nc, IR, LU,
METP, MEP, MDP, POCP,
ODP, AP, TETP
CF / WF / MF / EF / HF

ADP, ADP-fossil, GWP, ODP,
HTP, FETP, METP, TETP,
POCP, AP, EP

GWP, FETP, TETP, HTP,
METP, FEP, MEP, AP, CED

GWP, ODP, POFP, AP, EP,
HTP-c, HTP-nc, PMFP, ETP
GWP, FDP, ODP, POFP,
PMFP, TAP, FEP, MEP, FETP,
METP, TETP, HTP, MDP
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Author Battery type . .. Primary o
. 1 Funct 1 t I t 1
(Publication year)  (Cathode/Anode/Electrolyte) System boundary unetionat unt data mpact indicator
Sulfur-carbon complex
) ADP, AP, EP, GWP, POCP,
Wolff et al. (2019)[59] /Li-metal/ Cradle-to-Grave 1 km 2 MDP SED oc
LiTFSI+DME+DOLALINO; ’
Sulfur-carbon GWP, ODP, POFP, EP, FETP,
Feng et al. (2024)[60] complex/Li-metal /LiTFSI Cradle-to-gate 1 kWh (pack) 1,2 METP, HTP, TETP, ADP,
ADP-fossil
Benveniste et al. Sulfur-carbon ADP, AP, EP, GWP, POCP
. . le-to- 1k k 1,2 S ’ ’
(2023)[61] complex/Li-metal/ LiTFg]  Cradie-to-Grave Wh (pack) MD, PED
ecriot oo, po, . roce
Lopez et al. (2021)[62]  SAPIENCENI-ROSUIUL o dle-to-gate 1 kWh (pack) 2 TAP, METP, FDP, GWP,
LizS-graphene, MgB:-sulfur, TETP. HTP. EP
CooSs-sulfur ’ ’
. Sulfur-carbon
Benveniste et al. complex/Li-metal Cradle-to-gate, 1 cell, 22 kWh | AP, EP, GWP, ODP, POCP,
(2019)[63] TEGDME Cradle-to-Grave (pack) ADP, ADP-fossil
Arvidsson et al. CMK-3+Sulfur/ Li-metal
(2018)[64] JLITFSL+DIOX-ADME Cradle-to-gate 1 kWh (cell) 2 GWP
GWP, HTP-c, HTP-nc, FETP
Li2S8-CNT/Li-metal ’ ’ ’ ’
Teah et al. (2024)[65] i288-CNT/Li-meta Cradle-to-gate 1 kWh (pack) 12 METP, TETP, ADP,

/LATFSIHLINO;+DME+DOL

ADP-fossil, AP

=1 KWh (cell)
E1km

=1 kWh (pack)
o1 cell
mothers

Fig. 6. Distribution of FUs in LCA of SiNW, SiNT,
lithium-sulfur, and solid-state batteries.
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SINWs 2 SINTsHE S 12 B4gee S0
= ek Aok 24 lke® 7o AoK 1
St olakade] A i B A% 5RO

LCAL AlFo] Agste 44 AEls 75 4 wrasi
], St AR A 9 UGS - Fps
9 - 5h9g)0] B Weko] oF 30%E AAITITR= Kz 9o,
AR 713 T AR Al digslEE BMS - 97
94 EFoks 9 9] Hajo] Wasiel3).
s, A ol3A] 71 739 Wit o]2old whis o]
) W % Fote] A oA | kwhE il 7%

I AXE Zol8= ALk 71531H46]. Smith et al. [56]
}% A Hlole Y] RARE ARSHAE ZEolA] QAL o]

APAR] Ao A== 50 MJ A|A|e} | kg F 719 715
1= 7golsto] WAoHA] AlolE B3l 7| LIBSF Mo
A 882 vlaskalA; ok

25-3 AAoAE 1kme} 1kWh7t 32 715 TH& Ao
%)%l o, Benveniste et al. [63]2] A4+ Cradle-to-gate
oA I 17}E 71 5HRZ, Cradle-to-GraveOl|Al+= 22kWh
|39 ge-2HA AlA" Vg TIeEeE Atk
Heng Yi Teah et al. [65]< BatPaC Hd-S &-23lo] A=
100kWh 712} o2 HA] B 7|0 = A AlAdS Y
st 5, o]F &%F 1kWh @2 SHnormalization)$HO.

24 949 EEslE U9lR S & glglow, ol
S TRt A ol F1e50) B Bl % B4

o] 7RsSHEE Shoik
3 ere Wk

oleiet A AT olxx]
ool YE 7|2 Agach

2]

3.2.2 NA"” A

SINWS} SiNT 7]8F LIBE 5t LCA 4H9] :=FojA] A]

AE AA= 9 71K 7P 9 AkS E%E & Cradle-to-
grave= AAE|QIT}. o|apdR|] £ FT= E‘rﬁﬂ(end-of life,

EoL)o] tiallAls AlUE]Q B4 A EeE APSS AR
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AR oA A 71&9] 4388} 7Hs/dE 4] SHollA HE
e o $83% g2 Stk Tt SiNWse}F SiNTsO] 739
EoL ©A9] 7iA Rt 574 3ol A sk e At 2%
o] gt A B D 12 34l o3t A JFS
Z0)7] 918t k=¥o] FQasit.

9] HMIAHA] LCA ¥ = 5 7Ho| AAH BAE
Cradle-to-gate2 A3=H]|, ol= 483} o8l 7|&4
Alofo] o] ALG A 3t6t7| ol HH AR AR
Rietdorf et al.[51]2 Hlo|g] EAE o= AR ©AI2} EoL
= A3l FPAISHAAE, = ovA] = <l A
Aol T ARE DA AUA] 4H] AA0] A oS =
o3t

gE5-% A2 gl LCA At F 8Ho] ERIE]loH, o]
% Cradle-to-Grave S Z-83t =72 41, Cradle-to-gateE 4]
851 =52 410o]]t}. Benveniste et al. [63]9] A= 7|5
Q91o] e} A28 AAS Lelsjo] 29E Ho| B9t
WA, 27| dAoM= AFA 2ollA Al 1] A4t
A2 FAOZ Cradle-to-gated] Tiet LCAE 435It
1% o oleE vioR AAL scaling-wp) TS B
5} 22kWh 8232 BV of341A] mog sgat ¥, 44| 53
274& 7Pgst Cradle-to-Grave LCAE F7I12 43§}t
o] oJAFHA|= °F 1,0003]9] F - WA £ Ve R St
& 150,000km?] =5 ATE AL 4= U= Ao = 7P
on, A 1FgoflA] Aok AT HIETFE F 14,600kg
COreqP &2 A=A}

o

¢}

3.3 LCI &M
3.3.1 OIXRJHA| YA

LCI B4 22 9 9] Hojolld 4gat 240] ue} g
ol +4 B WEHEL AXT o} B BAIFL 2
o7)e Ulo] | 4 Yl THRAE HHoR ANl
BE5}51 Fgolch{42]. A olAkEA] LCA Aol
A LCI £492 91 Tt B4 78S 283 71 2
ubEjel WhEe 71 B9 doleiet 48 LCI DBE 263}
L upoR WE =Ho] A4l U HolsE XL 9
.
SiNTs, SiNWs LCAQ] 27| AYdF= 25 W AR o
o] Hlole}7} FE51) p] ] R AR dole]
HlgkoR 3 SslekRA] Aute] HiBo] Ak tjEAoR
et al[48]2 SINWs®] Lheqidel chat W7t 239} by

¥

)

i

ST i 1
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oA, FEISE 2A, A8E, =it

FAsle] AF 24 7H, FE AER 9 oJAPAA] Az thgh
LCI Ho[e= o248 Alitx|2F A4 HloE7t 23t JE
£ ARESISiTH

AA-EA oAM= LCT HolHe] BAE sidstr] fIsh
Rietdorf et al.[51]2 Ecoinvent©] LizS, P.Ss, GeSz, GeS &
Ao s A4A LCHE REFRTAL HAIFT: 2 Batuecas
et al. [55]2 ¥F LCIi= Hlo[EH[o]A A& proxy H|o|E
= Ajgsd), 31 A3 2 PVDF oAl PVDCE
oIk YSZE 4% 200: | ket SEAHER 7P E
3, FePOs= SJBILE W4 WHlE LCIZ 749 A
£ TS0I30H AAAEA] 5 NASICON A2 oAl E4
2] 25(500C) 714 DSC(differential scanning calori-
metry)® A2 FHHFS w6 A TS Allsto] 4
SIQATE. Zhang et al.[5012 S (HExARANAS) &
AkE 58 Bottom-up A O & A|F AUAIE AR 3t &
Zo|E o|A] an[Fe] AHf ASXE ARSI

A4 Tlolele] 3%, 483t AT 7Hd Adoldt gk Al
ZOLA|=, SiNWs, SiNTs tid LCA AtollAf= oxFA|
Aol "agt Meangs ALE o otds 59 A5
tloJelE ARESEALH46], AAl ARIRAS REFsto] Hlo]
B9] EHdS REa1[14], EVOA Q] ARE- TA7FA] 3E39tst
= AE QT ol= o]ARA] G 8429] AFREO]
71& LIBe} FARSH | wlo] tE ZpAH o]xF#]9] LCA
AE Ao g fEstA ZPHE SHo] okl e
Tk URRIZHAIR, Smith et al. [56]2 HIA] o]AFHA] 189
& - A7) offtfA] AH[Fo] 7]E LIB 38 U= [44]
7Iehsiotal 7gste, AaA Ax| o] Hafd A EeE
Aitsto] At 349 &2 YA AMSRRE WFEFCH
Keshavarzmoha et al. [57]2 7]& LIBS} thE EH|o|A Alo|
22 AlQlstal x4 379 F7lsto] FIEA AAHA|
9] AzoHA| LCIE 43

-2 A4 Deng et al.[58]9] A= A7 HlojE|et

ol melgZ ARt stolBIE LCI &4 HEE 535}
of &8 AA A= LCIE ARt dAFtoldt. T13iw-=}
EIHA|(GSC)} T2 E AR =(GO)= AFA 7k Alx A
A7} Hummers 3H[16]S HRO 2 LCIE RO, A
T B2 AR YR B8 98.5%E 7HIS H A9
A &9 HolHE A% ejilste] 2783

Wang et al.[44]-2 SiNWs 9 SiNTsQ] 7]& LCA 97 ¢
o[gE vt o 2 LCIE BT 4= & Excel 7|9H9] H7} =
2SR =4 R o|AEA] o] 1A, Ao
BU] RYAE Astd AL AR, 2T 7] EA2]
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AT W Rssit A dak oA BAATE

e
e AT Aolis HAlt

A o] X2 9] AL, AR & 7] Bl T HlolH
o] RAZ AIAE A0 A gAY 7HE = 53l €%
F29t LCIof| 29b=1 it} 53] AZ-EH 2AE2 F40|
EA o} oA A] AR - Akl E8E 4= §l7] 2ol Al
Uele 4] 4] FMIEE Rofske W40 Bt AleEict
[43, 46].

1A AA] kAT hot spot)?] TASH AL i FA
£ HEeE AR IF4ske S =YY = Atk
Rietdorf et al[51]: AP Hsid 3] A&of Am B,
2 2 79, 382 B AR AL 24slo] LIS
A3t} Lastoskie and Dai [52]= EZ3H 54 14 & L}
A & FAE 2450 Saktiz’ 9] AR Yi 297 TR ==
AT}, ESE Schreiber et al. [53] PVD/Sol-gel 52}
K wi91e] 4Heel SAlof Holx A28 7ks wse] sfet
2700l Al Belur 2AE Agelel Ko T
A g2 AS AAlsHL LCAE 33Tt

AEXoE, A o]xpA] B LCI 849 E42

JHHEF‘EO

N

glelel7t e 3% A9 gH|e] 44k 715 Bottom-up g4
< 50l ofuA] ABFZ F45Y LIB 71 ARgof ofEs
], olof] w2 E3HAAo] FE = 71Ho] Bt 3N, viFE
4, B3 AS HolH 54, 2% 99154 t°lEDB

Zo] W]k

3.3.2 AkZ HA

ZA5AQ0 HA7T At EVE H| IS o, Eva AJ4E
A7} B A9 GWP, TETP, FDPS} 742 9 A HOJA
= ARSTATE ZujFoletal HAskaL ltH67, 68]. wHbA,
A o]RFHA| Q] ARSEAS] gk LCT 32 7] LIBS}
H|wo}7] QoA B4Aolct. siA|EL, ofF] AFR8StE|A] gk
A o]AFAR] 714:9] LCA AT 488 A] HlojElq] RZo]
gAdx oz At wheha] B4 3gollA] utEl= EE
Q1 7HIES BE] 7I&shs A GA] 801t tiREY] A
7|2 ARE olx ROl ARG TAOIA FEEHOoRE AFTE=
THES A7|AEAS] FA, AHIA 717 9 9 A, o|%
Az Bo] &5 9 A g8, 183 S0 FeEE Y

TS R s B0, W =7FE viwmeE AF A,
45%9] TIELE} 55%9] EA| FPZ 7PIStal HHl=
164 8Wh/km(1]3 S48 53 EPA, 2013W% 7|2, A 1
2 9 S 882 91.4%(W5 oUAIFEA EIA, 20131
T 7|37} AH8=ITH 14, 46, 48]. Deng et al.[46]-2 o]ZFHA]
wg AT U2 dolsE FYHoR Akt 99
Argonne National Lab2] BacPac AZLE{0}E 83} o]
£ B9 A9 7IEol = ojAA] o] 13] FHoR
320kme] A7|RREAF 0] Thst 120kW E2E W=
AAZCH, ol vls A UAFDoE)2] 2020¥ HHE =
371 il

o|AH AlAH] Al A HAE ZtEE Y 710l
Bz o)A Al Ei= o] BAfol Zo] Kol AEE
FERE 8 25 eA AR R wdsh= o] wie- &
23} 2, A4 oHAE 7|20 LIBE SR W14
FA el A o) B3 olgE 2] Aok AL
ke B0 B3] o) aFE 45E Tl
LCA 977} 9-9u|siAlt}. SHH, Deng et al.[46]< SiNTs9]
ARG G LCT 4 Al 85 A5ke&(decay rateyS 7I50=
Aoleh. NCM-SINT olAHiAIE AAS3he 23712 109 5
Qb wstollAl £33 A9 oF 200,000kmE FHFF & ik
[69]. olw] =AY T= (& 2] FA2= ALHTH38):

T=Do(c~(rc?)/2). A1

07|14 Dpi= 13] F4° W2 27| 9 Az, o=
Z - WA 34 (cycling number), 12 &%F 5-3]E(capacity
decay ratey& W3t} o]AHA|S] WA 71ES &7 30%2
e Fil 27| F9 AZE 320kmE 7PERITHE
200,000km FHPAZE T 915t 85 & ri= 0.04%
ofstofof gict. A4 AP TAoA A2 4= Q= SiNTs
S2A19] &F BHE-L 0.004% TR LHE Q7] wlEo
[70], SiNTsi= ARE TAIE AIAE] BA 0] 270 S35t

e 7T ek & 4 Sickd]

HEH AVA-IA LCA =2 F ARHAIE & 5=
il giglem, ol #¥ doly FAl wiEeld
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Consortium) =711 40kWh W 7F35ick 9% 2 773
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kg oA AH[FRS F9HOH, DoD 80%2 4 &4
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& T2, Al 349 o 2AEE 2 AE SEJHL
7R HEARl AUy Qojlx= AaA| AA|7F LIBEH g
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&2 A A5 F Deng el al[58] Pl SHFETH
(EPA)2] IA| 8% AOIZH(UDDS)¥ Y&z AH| Al A
O|Z(HWFET) Hjgl& &8sl 253 HAE FARt A7
AREALS] AA 7 9] A7] ABE AlEH el ol
53]l NCM-Graphite 7|5t LIB thH] 2A71A viE3RS 4.3%
AaAd o Qv 23E WHEFT. Wolff et al.[59] o]z}
WA A5 A9 dolES Mo B 317 VI BAS
A8 & A8 ks oeist 23 ACS AEskn A B
AloA 9] A7 HiEHE AL

FHH, ARE- T 5
HE 3 - Ao ARREE A719] AR ol|A] BlSS =ol=
Aotk I=jE gAY A MU vlgo] F7FHH FUgS
A7 A] 2815 FAZ st 2A7IAE 23’ 72

g0l Waw Hojk

3.4. aiiM
3.4.1 LCA Z1t ofiMd

, 28, A8, =t

[e]

Fig. 7:Z 7]& LIB2} 2R XAt o] 9] =zoilA]
AlEsk= GWPE| A& H|wet Jdjzo|ck LIB: A¥A
9] o & HloJe SAof| wet FAs] W "R U
AZ & 4 Atk Li-S 2 Si 3= 7HF o]APR= =2 Wl
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of et =9 S 9 AXTA7IA] EEHA7] 2ol 7t
£ GWP HXE HYch

£ EFTF AHEE AT EH, NCM A SiNTs o]=}34]
+ GWP&} FDP SHHollA] LIBo} FARE S 93k Hol7]
ol FF A& 7hset S fIshiAle olEtt R ITFE
NS &= Sl FAA HRkE: = Zlo] P ]5ItH46]. Deng
et al.[46]2 O|XPA|9] Tt ikE 1Y S A=
of] ARgE= A=o] Bede wol= Aol 7hed= AR
qEHCE wivlE Jeh k3] 882 32%0A4 65%=
A1, FB(template) 1kg T AfolEZ Y] AR
12.5kg0 &2 YU 4= k. ol thati A4t Au] 2.9 2
7495 A+= GWP, FDP, ODP, PMFP, POFP, TAP, TETP
Tt 23 B ®FlA 15%~50%2] 71 B3t Lt
ym, ol 159 Agjel % AP FFE SAl 28T
U= omeith

Accardo et al[43]S SINWZ 3}sle] LIB, SiCPAN
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Fig. 7. Comparison of GWP of LIBs and next-generation secondary batteries.
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A3} SiNWs= LIBS} B3 off & AJue]e 27 H5o|
A RES] P WU O =2 g UERinh 9] A
oF9] Al QoflA= HTP-cE AlQlolal= i S JgellA
ET3t A3 YeRg=), ol SINW 49 02 ARSE]
= Ak AL Ef Az 3 S WAk H71ES A,
T AL gRfe] & ESleAo] A whiEel Zo s U
Epdtt

SiNTs®} SiNWsE H| k= Aol SiNWs7}F 24tz o
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YA Amo] okE GWPEYLE oftjg} o]xdA] A4t TAolA
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T2 O A o3RS tiHlste] & ZoE Hilskal
UTH43,44,46]. SINWs AZ= o qA] FoFAQl AT Ao
P[47], 88> SiINWs7} SINTskt 2 Whd o] L7}
o} 5Ug o|XpHA] 8FE A5 Qo o B2 el &
‘dE4o] BR3ZF Aol FH o]fo|th45].

IEA AIA AXE W= =85 LCA A+{3]°
Al LiPS(EE]9) - LIGPS(aLA] Asid) ) &= &=d
(NMC811) Az A8 9 A7} StARO 2 SRIEQl=T),
E3| Az FAA AF FEQJo] AF Tt Keshavarzmoh et
al[57] ZH|o]d AlolE, A, WAAIAH ko= gl
PR ;oA A= Qo AXRAR Qs GWP 2
CED7} 22+ 73%, 75%% AA510] LIBHTE &2 ke Bl
t}. o] & Bal ol st FIEARIA ARAL] ofvfA] &
HI7F AXAR] 93] siadt 5 shdE o 4= Qi

ABFEA ATA| HAE FoE g HE LCA AtollA
L AzxgA)4 2] GWPS} CED7} LIBEL} &=9k=d], o=
Alepa] Asid g4 2 12 AF IYoNe =2 A7 4L &
oifA] AnlE wiEo|w, olfjgt 12 AFL =2 TAPS}
PMFZ% o]oj%t}. Schreiber et al. [53]2 LLZO/LATP A|
Zo]] ol La, Zr, Al, Ti 22 34F< 7|02 LIB HiH]
ADPA|H Fdo| ZIth. Zhang et al.[50]2 LATP §Hdof 2
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9 EP X ®7} IA BA=]9c). o]9} HI|E, Batuecas et al.
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AEEE ARSHA 37] Wil LIBTiH] W2 54X RE B
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Lastoskie and Dai [52]+= ¥12}FA4|9] LiPON A& £4
Bt 25 SR gi] & Adx 9 EelolE dArt
AL AT, 25 F2H0] H7)o|A] AR Qs 540 £
A okt SHAEE M| AA|9] oA WEE 71E LIBH

H| 2|2 7FY5HH GWPZ} LIBEE @Yol 4= 22 Y
o} Liu et al. [54]2 JEAAE 712 LIB tiH] {-siA
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vl A S YFOE HTP, EP 52 LIBS} HIS5HA
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A& 4= a1, I1A WA ARgEl= Sl 7E4(La, Zr, Ti
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9] YE-IFAAE O R LCAS 53} 1 23}, ODP
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3.4.2 UHE: 24

R 242 Wi el nhe Ante] Hude dSste
o=, A ofaPdAe} o] 71 et W Tee
2= 5= LCA =9 A w9 Z-85itt HEH ==olA]
R 242 A Ajo], oA s, i At AluE
2, 37 sl AgE 9T 59 845 S olFold =+

ATt

3.4.2.1

Wu et al[47]2 SiNWsQ] o]2 8o tfisf 1287/
1,930/3,088/3,860 mAh/gQ & Uiro] wizte AL 28t
A3}, o|& &30l 7S Yol HATS HolAH,
FEP YkZ AQfotal = g WA LIBEY =2 $Y
S Bk E3E AIE 4% 935/1,006/2,000/3,000 3
E o] 9iFE B4 A3, SiNWs= LIBLE fARE 9]
g FS 2AsHH AfolE o] F4 30002]0] S
oF i}, o]AH SiNWs= €742] SHolA| LIBo] Hls| £
St o] HolX| I9kTH47]. Deng 5{46]:% o219 H
T AJAO = QIS LIB Wof| H|sf| =2 FPAL} ¥ &
BYFS Aol 28T 4= kel AFeeh ESE SINWs A
Ak & 718k 9Hd 9] SiNTs9] AJ4itkt 3u8) =2 oAkl
A &S B T2 8|8820]9/th Smith et al. [56]2 %
7] ArA R4 BiETo] =2 A o|APHR|= FrEo] &
O ET|5HAITL, 2,800 Al]E oY o] HARE off LIBL}
GWP, CED A#7} A== A5H0] AU

22 9l A0|12 20

[SX® RS = TOoO

3422 UF it A=

A oZFIAl= TR A9 1R HloElE ARSI
mzoll Alxg7ge] AU 483t dAolA 7I€ LBt
D34S vlasked| o] vl S85H Troy et al. [49]=
2ALO] Hiek ARl 24 A3 AR AAILOIAE
5799 Mg olvAd A S A4 3 A A
S FA S TPIRCH, 7 GWP 7|EC= Al 27
Lol
370] 2734 SkAagol it E3E Zhang et al[S0]= AES
g HielelE a1 A3l A8 dnle] A48 EW)T Al
2ol miE A2|Fikg/h) HlolEE AR A I olUAIE SHAt

stk ol Ba) A4l Tl the] B ouix] 4wt of

=

A oF 96714 17} FAghom, FHALLZ) A
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Zo} 50%71A] F4adE AL, 101 GWPZE | 16.2% 7A
A=t Feng et al.[60]2 LSB2} A-LSB(HIA =&
O|xpA)) Q] AFdS} AAE FAoNA L] T 7HA] Al Wl A8
AL eAle] 7] 2efeg ol A% Al YA BEE
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Aol AeZ wob PE A7U(2022M3I5A1056072,
2022M3J5A1056117, RS-2024-00447869).
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GWP: Global Warming Potential
ODP: Ozone Depletion Potential
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POCP: Photochemical Ozone Creation Potential
POFP: Photochemical Ozone Formation Potential
AP: Acidification Potential

PMFP: Particulate Matter Formation Potential
IR: Tonizing Radiation

EP: Eutrophication Potential

FEP: Freshwater Eutrophication Potential
MEP: Marine Eutrophication Potential

TEP: Terrestrial Eutrophication Potential
FETP: Freshwater Ecotoxicity Potential

METP: Marine Ecotoxicity Potential

TETP: Terrestrial Ecotoxicity Potential

HTP: Human Toxicity Potential

HTP-c: Human Toxicity Potential, carcinogenic
HTP-nc: Human Toxicity Potential, non-carcinogenic
ADP-elements: Abiotic Depletion (elements)
ADP-fossil: Abiotic Depletion (fossil fuels)
ADP: Abiotic Depletion Potential

FDP: Fossil Depletion Potential

MDP: Mineral Depletion Potential

CED: Cumulative Energy Demand

PED: Primary Energy Demand

RDP: Resource Depletion Potential

WS: Water Scarcity

WDP: Water Depletion Potential

WU: Water Use

LU: Land Use

CF: Carbon Footprint

WF: Water Footprint

MF: Material Footprint

EF: Ecological Footprint

HF: Human Footprint

TAP: Terrestrial Acidification Potential
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