Life Cycle Assessment on Textile Printing Products and Its Applications

ChangSeok Suh, JikHwan Park, KyungShin Kim, JoongWoo Ahn
(Yuhan-Kimberly Co. Ltd)

ABSTRACT
This is the summary of the result in a comparative life cycle assessment between digital textile printing(DTP) and conventional textile printing from raw material acquisition to strike-off sample manufacturing which is to find quantified environmental impact of the product and its strategic applications. In this study, a strike-off sample was selected which satisfies over 4 grade fastness quality with original design. Site-specific data were obtained either by actual measurement or by calculation or by data base of worst case was used when it was impossible to get site-specific data. This study considered nine impact categories: resource depletion, global warming, ozone depletion, acidification, eutrophication, photochemical oxidant creation, human toxicity, aquatic eco-toxicity and terrestrial eco-toxicity, and characterization results on the impact categories were analyzed. As the result, environmental burden of DTP is less in the range of 1/5 to 1/126 than that of conventional printing. This study will be utilized to provide environmental information of the product to consumers and customers and to establish the strategies for internal and external purposes such as environmental report and D/E.

Key Words: Digital Textile Printing, Conventional Printing, Comparative LCA, Strike-Off sample, Nano Ink
I. 서 론

유한길의 장기적인 발달로 인해, 가정용품, 유흥용품, 여성용품, 성인 용품, 환경용품, 디지털날염 등 소비자와 직접 접촉하는 생활용품을 생산하고 있다. 그러므로 소비자의 위생안전과 더불어 제품환경은 더욱 중요하게 취급되고 있음을 두말할 필요 없이 것이다. 그 동안 유한길의 논의하는 제조업계의 환경부하를 줄이기 위한 노력은 구준히 진행하였으나 국가 환경보호운동에도 많은 노력을 기울였으나 이에 만족하지 않고 제품에 대한 환경성 평가를 진행하였고 이를 바탕으로 제품의 환경성 개선에 대한 노력을 지속적으로 추진하고 있다.

이런 이유로 환경지 및 디지털날염에 대한 전과정 평가를 실시하였고 현재는 안양 및 김천 공장의 소각 로에 대한 전과정평가를 실시 중에 있다.

또한 영체는 섬유산업에서 매우 중요한 위치를 차지하고 있으며, 정밀화학, 기계, 에너지, 전자 및 환경 등 관련산업을 포함하여 기술적으로 파급효과가 매우 크다. 특히 영체공정의 경우 다양한 물과 여러 화학약품을 사용해야 하기 때문에 퇴연적으로 다양한 폐수를 배출하게 된다. 따라서 산업국에서는 이와 같은 영체전부터 청정기술 및 폐수처리에 대한 국가적인 차원에서 많은 주자가 이루어져 왔고, 국내에서도 환경에 대한 인식의 고조로 인해 이에 관한 관심이 높아지고 있는 실정이다. 디지털날염은 기존날염에 비해 컴퓨터 기술을 응용한 배색 시뮬레이션 시스템과 디자인 필름의 제작을 행하는 자동 도안 시스템, 판을 사용하지 않고 적절 원판에 날염을 행함으로써 환경친화적인 제품으로 인식되지만, 과연 정량적으로 얼마나 많은 환경부자 저감되는지를 평가하였으며 날염용 잉크의 연구 개발 진행사항들을 소개하고자 한다.

II. 날염시스템의 비교 전과정평가

1. 디지털날염(Digital Textile Printing: DTP) 제조공정

디지털 날염은 디자인에서부터 날염까지의 공정을 완전히 디지털화함으로써 인크젯 프린트를 이용, 무 판목, 무 채판으로 날염하는 방식이다. 즉 제품설계, 색상조정, 염료배합 과정이 모두 디지털 방식으로 관리되므로 디자이너가 의도한 대로 절을 공간에서 다양한 원판, 색상과 정밀한 무늬를 자유롭게 표현하고 유지하는 것이 가능하고, 또한 작업한 디자인의 데이터 보관 및 관리가 용이하여 필요한 분량분량 정확하게 출력할 수 있다. 기존 날염 및 디지털 날염의 공정을 비교하기 위하여 각 공정에 대한 비교표를 작성하여 [Fig. 1]에 나타내었다.

![Fig. 1 기존날염 및 디지털날염 공정비교표](image)

Fig. 1에서 볼 수 있듯이, 기존 날염 공정은 디자인 채색 제작 시 판목 및 스크린제작 등 많은 공정과 장시간이 소요되는 반면, 인크젯 날염 시스템은 디지털 방식에 의해 색상 및 디자인 변경을 쉽게 할 수 있으며, 이 때문에 높은 날염공정은 가능하지만 퇴연한색조표현이 가능해 다양한 디자인을 단기간에 처리할 수 있는 장점이 있다.

2. 연구의 목적 및 범위 설정

2.1 목적 정의
(1) 연구 수행이유
DTP 시스템 전과정에 대한 총체적이고 정량적인
환경성을 평가하여 그 결과를 바탕으로 내부 개선에 대한 아이디어를 획득하는 한편 디지털 낡업시스템의 환경성을 일증할 수 있는 근거자료로서 활용하고, 환경전화적인 제품 개발 등 추후 관련 연구에서의 기반 인프라 데이터로서의 가치를 가질 것이며 본 연구에 참여한 안양공장 전과정평가팀을 비롯한 생산 및 개발부서 등 전과정평가 전문 인력 양성의 기회로 삼기 위함이다.

(2) 대상 첨성

전과정평가 연구 결과가 전달될 대상은 회사 내부의 경영진, 사원, 의사조직(커뮤니케이션, 마케팅, 제품 개발, 생산, 환경……), 이해관계자(정부 기관, 학계, 연구소, 기존 낡업 업체, 디자인 및 의류 업체, DTP 사용자 및 창조적인 녹색 소비자 및 단체) 등이 될 수 있다.

(3) 결과의 활용방안

환경성, 생산성, 자원 사용 감소 및 환경 친화적 제품 개발을 위한 공정간 비교 분석과 국가 정부에서 기술로의 공인된 결과를 도출하여 이해관계자에 대한 홍보 및 사업 전략에 활용하며, 기업 환경 보고서 작성 및 DfE(Design for Environment)에 활용하고자 한다. 또한 추후 환경성 데이터를 바탕으로 경제성, 안전성, 사용자 편의성 등 DTP가 가지는 성과기능요소와 함께 마케팅 전략 수립에 활용하게 될 것이다.

2.2 디자인 선정

본 비교 연구를 위한 디자인 선정기준은 두 낡업시스템의 동등한 비교가 가능한 디자인으로서 현장이이터 신뢰성 확보를 위해 3개의 디자인을 선정하였다. 디자인 선정 결과는 [Table 1]에 표시하였다. 디자인 선정 기준은 연구목적 및 범위의 단계에서 정의한 기준에 부합하였다.

<table>
<thead>
<tr>
<th>디자인번호</th>
<th>색상</th>
<th>캐주얼성</th>
<th>외관</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>빨강</td>
<td>13</td>
<td>Cotton Sheeting, C201 x C203, 60x60, Plain</td>
</tr>
<tr>
<td>2</td>
<td>녹색</td>
<td>15</td>
<td>Cotton Papel, C201 x C203, 139x122, Plain</td>
</tr>
<tr>
<td>3</td>
<td>주황</td>
<td>13</td>
<td>Cotton Papel, C201 x C203, 139x122, Plain</td>
</tr>
</tbody>
</table>

2.3 기능 및 기능단위, 기준호흡

<table>
<thead>
<tr>
<th>기능</th>
<th>EFW(Elite White) 환경부재력표출</th>
<th>기능단위</th>
</tr>
</thead>
</table>
| 기능단위단위 | 동일한 색상의 디자인 및 낡업시스템의 기술적 환경성 실험에 사용하여 (0.677m, 0.137m)의 50% (Strike-off) Sample을 분석하여 기준 (기준 4) 이상의 환경성 보장하는 낡업시스템 사용
| 색상 | 색다른색상의 비교 (AATCC 15-1, 색상/ AATCC 61, 색상
| AATCC 61 등 | /AATCC American Association of Textile Chemists and Colorists |

2.4 초기 시스템 경계 설정

디지털남업 및 기존남업의 셜로 생산을 위하여 부업하는 물질체의 수용, 제품체호의 전과정 단계를 초기 시스템 경계로 설정하였다.

2.5 데이터 범주

제품제조단계에서 각 단위공정별로 수집된 데이터 범주에는 에너지, 원재료/보조물질, 제품/판매용품, 대기 배출물, 수재배출물, 공정폐기물 등이 있다. 이들 6개 데이터 범주를 대략적으로 규정하면 다음과 같다. 모든 데이터의 단위는 kg를 사용하였으며 전기의 경우만 그 특성을 고려하여 MJ단위를 사용하였다.

- 에너지

에너지 범주에는 제품제조공정에 사용되는 전기와 스팀이 포함되며, 수용 시 수용단위의 동일성으로 사용되는 경우, 다계, 동류가 이에 포함된다.

- 원료물질/보조물질

디지털남업시스템의 원료 및 보조물질에 속하는 물질들은 취급과 코팅제 그리고 인으로 크게 분류될 수 있으며, 기존남업시스템의 원료물질들은 취급, 약료와 효과가 있으며 보조물질에는 스크린을 제작하기 위한
sheer와 펑ظم, 카슈, 포리즘, 산술제, 초배지 등이 있으며 이외에도 캔프지 등의 물질들과 있다.

- 제품/중간 반제품

제품은 두 난염시스템 모두 S/O Sample이며 중간 반제품은 각 단위공정 별로 생산되는 반제품들이 다. 기준을 난염시스템의 반제품은 Film, Screen, Confirmed Screen, Printed Fabric, Steamed Fabric, Washed Fabric이며, 디지털난염시스템의 반제품은 SM File, Coated Fabric, Printed Fabric, Steamed Fabric, Washed Fabric이며 있다.

- 대기배출물

난염시스템에서는 스팀 사용에 따른 vapor 이외의 대기배출물이 발생하지 않는다.

- 수계배출물

두 시스템 모두에서 발생하는 수계배출물은 각 단계에서 발생하는 폐수 내에 포함되어있는 TSS, COD, BOD, Copper, Lead, Toluene, Phosphate, Nitrate 등이 있다.

- 고형폐기물(폐기/재생)

공정 잔여물은 S/O 제작단계에서 발생하는 것으로 디지털난염시스템에서는 코팅 및 프린트 시 발생하는 원단의 잔여물과 임포장재 등이 있으며, 기존난염시스템에서는 스크린 및 S/O 제작 시 발생하는 잔여물과 포장재가 있다.

2.6 데이터 품질요건

데이터의 필수적인 품질 요건은 시간적 범위, 지역적 범위, 기술적 범위를 전과영에 대하여 설정하였으며, 결과의 해석단계에서는 일관성과 완전성 등을 중심으로 데이터 품질평가를 수행하였다. 따라서 정의한 데이터범주들에 대해 각 단위공정에 사용된 데이터의 품질요건은 다음과 같다.

2.7 할당

디지털난염과 기존난염 비교에서는 할당에 대한 특별한 이유는 발생하지 않았다.

2.8 영향범주 및 특성화 방법론

전과영 목록의 단계에서 도출된 목록항목 들에 대하여 국제적으로 공인된 영향범주 방법론이 존재하는 환경영향평가, 전세계적으로 전과영 평가 연구에서 많이 고려되는 환경영향평가, 국제적으로 공인된 영향평가 방법론은 없지만 국내 또는 회사정책상 중요하게 고려될 수 있는 환경영향범주, 국내 환경정책자체 제도에서 고려하고 있는 환경영향범주로서 무생물 자원 고갈, 지구 온난화, 오존층 파괴, 산정화, 광학학 신화 물 생성, 부영양화, 인간 독성, 수계 독성, 지상 독성 등을 선택하였다. 특성화 범주는 9가지의 영향범주를 고려하여 상용적인 모델을 사용하였다.

2.9 가정 및 제한사항

- 제품제조 단계의 데이터 완전성은 100%로 하였으나, 보조 물질(약품)의 경우, 일부 약품 업체에서 회사 정책상 외부 공개가 불가능하여 데이터를 제공 받을 수 없는 경우도 있었다. 즉 염료 및 염료인크 등은 구분 성분을 공개하지 않아, 일반적인 데이터를 사용하였다.

- 데이터 범주에 따라 모든 환경 부담/산출물은 기존난염 및 디지털난염 산품생산 시 실측 데이터를 사용하고, 실측이 불가능한 것은 계산 및 추정을 하되 반드시 그 계산 절차를 명기하는 것이 원칙으로 하였다.

- 영향 범주는 ISO에서 정착하는 방법론, 전세계적으로 많이 사용되는 방법론, 전과영평가 S/W
에서 지원하는 방법론. 회사 경제상 고려하고 있는 영향 범주를 고려하여 최종 선택되도록 하였고 현상수술의 경우, 해결사수술 후에 발작한 '해상거리포'를 사용하였고, 비해상수술은 환경에 문의하여 거리를 적용하였다.
• 국내수술의 경우, 최저 시 간차로 돌아갈 경우가 마다자로 돌아갈 경우, 다른 곳을 들렸다는 경우 등 다양한으로 인한 추적이 불가능하기 때문에 최저를 고려하지 않는 것으로 가정하여 각 납품업체에서 양념 디지털산업 공장까지의 거리 및 기존생활은 안산 기존생활 공장까지의 거리를 적용하였다.
• 연구대상 시스템에서도 언급하였듯이 두 시스템의 설비의 제조 및 폐기에 관한 사항은 연구범위에 포함하지 않았다.
• 두 납영시스템에서 발생하는 폐수는 폐수처리장을 통해 자연으로 배출되므로 폐수처리장 데이터와 이후 폐수생산데이터를 활용해야 한다. 이를 폐수의 암과 성분을 기준으로 점검한 항목이 이루어져야 하며, 관련되는 데이터의 한계가 단순 집계기준으로만 항목이 가능하며 두 납영시스템의 폐수의 차이가 거의 없어지게 된다. 따라서 본 연구에서는 폐수처리장은 고려하지 않고 시스템에서 발생하는 폐수의 성분데이터를 활용하였다. 단, 추후 이러한 항목에 의한 연구 신뢰성을 확보하기 위하여 폐수처리공정 DB를 적용하여 민감도분석을 수행하였다.
• 기존생활시스템의 경우 1개의 S/O 생물을 생산하면서 여러 요인에 의해 불필요한 반복생산이 이루어지는 경우가 있다. 색의 배합이나 스크린의 문제로 반복생산이 되기도 하며, 고객의 요구에 의해 이루어지기도 한다. 따라서, 정확한 연구를 위해서는 자체적 문제로 인한 불량율을 고려해야 하지만, 불량율을 원인 별로 명확하게 구분하기 어렵으며 디지털산업시스템이 아직 충분한 데이터가 축적되지 않아 동등한 데이터를 적용할 수 없었다. 또한, 불량율을 수치는 작은 오차로도 연구 결과에 큰 차이를 보일 것으로 예상되어 본 연구에서는 반영하지 않았다. 따라서 기존생활의 임상에서 best-case 사나리오라고 볼 수 있다.
• 색상 표현(Color Matching)의 경우 S/O제작 시 중요하게 평가되는 부분으로서 납영시스템의 품질을 보장하는데 중요한 인자로 하고 있다. 그러나 공인된 측정법이나 절차가 없으며, 대부분 실제 S/O를 주문한 고객이 주관적으로 색상 표현의 품질을 판단하고 있기 때문에 두 납영시스템의 색상 표현 측면을 기능판위에 포함할 수 없었다. 추후 두 납영시스템에서 합의된 타당한 평가 방법이 개발될 경우에 이에 대한 결과를 반영할 계획이다.

3. 진과천목록분석

3.1 초기 데이터 수집

초기 데이터는 기존생활시스템과 디지털생활시스템의 생산, 구매 및 재무 태업로부터 자료와 현장데이터, 생물체제 시 설계 및 외부공밀기관에 의하여 분석하였다. 이를 근거로 규명된 디지털산업 및 기존생활의 S/O 생산에 관련된 물질의 투입 및 산출물 데이터를 선별하였다. 주로 초기 데이터 수집단계에서는 시스템 으로 투입되는 물질 및 양에 관한 데이터 수집에 초점을 맞추었다.

3.2 투입물 분석

초기 데이터 수집에서 얻은 데이터를 이용하여 시스템 경영 설계를 위한 투입물 분석을 하였다. 이때 투입물은 품질에 부정되는 물질이며, 공정 내 중간 반제품은 제외하였다. 또한, 투입물의 질량기여도를 조사하여 Upstream의 경계를 설정하였다.

투입물 분석을 위해 2002년 3월부터 2003년 3월 기간 동안 이루어진 S/O 제작에 부임한 물질 사용량을 기존생활시스템과 디지털생활시스템의 생산 태업으로부터 자료와 현장데이터, 생물체제 시 설계 모두 산출물 생성과 관련된 데이터를 선별하였다. [Table 4]와 [Table 5]의 투입물량은 두 납영시스템에서 구현 가능한 특정 디자인을 0.6678m² 크기
의 원단에 S/O를 제거하는데 부응된 물질의 암이다. 투입물의 질량 기여도 분석표에 의한 기존염 생물생산과 직접 관련된 물질은 총 4개로 나타났으며, 디지털염 생물생산과 관련된 물질은 총 9개로 나타났다. Cut-off criteria는 본 연구가 두 낭업시스템의 비교를 목적으로 하고 있으며, 두 낭업시스템의 차이를 고려하여 제시되는 결과가 없이 모든 투입물을 고려할 수 있도록 100%로 설정하였다.

<table>
<thead>
<tr>
<th>순번</th>
<th>투입물</th>
<th>분석량</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coating</td>
<td>Cotton Fabric</td>
</tr>
<tr>
<td>2</td>
<td>Coating</td>
<td>Urea</td>
</tr>
<tr>
<td>3</td>
<td>Washing</td>
<td>Surfactant</td>
</tr>
<tr>
<td>4</td>
<td>Printing</td>
<td>INK</td>
</tr>
<tr>
<td>5</td>
<td>Coating</td>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>6</td>
<td>Coating</td>
<td>Carbonic acid monosodium salt</td>
</tr>
<tr>
<td>7</td>
<td>Coating</td>
<td>Calcium</td>
</tr>
<tr>
<td>8</td>
<td>Coating</td>
<td>Sodium acetate</td>
</tr>
<tr>
<td>9</td>
<td>Coating</td>
<td>B V</td>
</tr>
</tbody>
</table>

4. 영향평가

4.1 영향병주 별 특성화 결과

전과성영향평가는 연구의 목적 및 범위정의에서 정한 9가지 영향 범주에 대하여 수행하였으며 [Table 6]에 요약하였다. 각 영향병주간 상대평가는 될 수 없으나, 디지털염과 기존염에 대한 비교 전과성 영향평가 수행 결과 각 영향병주에 있어 DTP의 환경영향이 기존염에 비해 1/5 ~ 1/10 정도로 우수하게 평가되었다.

<table>
<thead>
<tr>
<th>영향병주</th>
<th>DTP</th>
<th>기존병주</th>
<th>DTP</th>
<th>기존병주</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. 기존염 투입물 분석표

<table>
<thead>
<tr>
<th>순번</th>
<th>투입물</th>
<th>분석량</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Screen</td>
<td>Photopolymer</td>
</tr>
<tr>
<td>2</td>
<td>Film/Screen</td>
<td>Polyester</td>
</tr>
<tr>
<td>3</td>
<td>Screen</td>
<td>Peraclor</td>
</tr>
<tr>
<td>4</td>
<td>Screen</td>
<td>Plastic</td>
</tr>
<tr>
<td>5</td>
<td>Screen</td>
<td>Bond</td>
</tr>
<tr>
<td>6</td>
<td>Screen</td>
<td>Acryl</td>
</tr>
<tr>
<td>7</td>
<td>Film Generation</td>
<td>Ammonium Thiosulfate</td>
</tr>
<tr>
<td>8</td>
<td>Screen</td>
<td>Methytriolethane</td>
</tr>
<tr>
<td>9</td>
<td>Screen</td>
<td>Propylene</td>
</tr>
<tr>
<td>10</td>
<td>Paper Printing</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>11</td>
<td>Paper Printing</td>
<td>Paperboard</td>
</tr>
<tr>
<td>12</td>
<td>Paper Printing</td>
<td>Paperboard</td>
</tr>
<tr>
<td>13</td>
<td>Paper Printing</td>
<td>Polyethylene Uncoated</td>
</tr>
<tr>
<td>14</td>
<td>Heating</td>
<td>Surfactant</td>
</tr>
<tr>
<td>15</td>
<td>Screen</td>
<td>Thinner</td>
</tr>
<tr>
<td>16</td>
<td>Mask Printing</td>
<td>Cotton Paper</td>
</tr>
<tr>
<td>17</td>
<td>Paper Printing</td>
<td>Photopolymer</td>
</tr>
<tr>
<td>18</td>
<td>Paper Printing</td>
<td>Anionic Sulfonate</td>
</tr>
<tr>
<td>19</td>
<td>Film Generation</td>
<td>Styrene Glycol</td>
</tr>
<tr>
<td>20</td>
<td>Film Generation</td>
<td>Hydroxide</td>
</tr>
<tr>
<td>21</td>
<td>Film Generation</td>
<td>Polyvinyl Alcohol</td>
</tr>
<tr>
<td>22</td>
<td>Film Generation</td>
<td>Sodium Sulfate</td>
</tr>
<tr>
<td>23</td>
<td>Film Generation</td>
<td>Sodium Acetate</td>
</tr>
<tr>
<td>24</td>
<td>Film Generation</td>
<td>Phosphate</td>
</tr>
<tr>
<td>25</td>
<td>Film Generation</td>
<td>Acryl</td>
</tr>
<tr>
<td>26</td>
<td>Paper Printing</td>
<td>Polyvinyl Alcohol</td>
</tr>
<tr>
<td>27</td>
<td>Paper Printing</td>
<td>Polyester</td>
</tr>
<tr>
<td>28</td>
<td>Paper Printing</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>29</td>
<td>Paper Printing</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>30</td>
<td>Paper Printing</td>
<td>Sodium Sulfate</td>
</tr>
<tr>
<td>31</td>
<td>Paper Printing</td>
<td>Sodium Acetate</td>
</tr>
<tr>
<td>32</td>
<td>Paper Printing</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>33</td>
<td>Paper Printing</td>
<td>Polyester</td>
</tr>
</tbody>
</table>

4.2 디지털염의 수송물질별 환경영향

환경영향으로 도출된 환경영향은 특성화 과정에서 분석해 보면, 요소가 가장 큰 영향을 미치며, Surfactant와 NaHCO3 그리고 인크의 순으로 기여한다.
4.3 디지털날염의 공정별 전기 영향

디지털날염시스템의 환경이슈도 도출된 S/O 제작 단계의 전기의 공정별 기여도를 분석해 보면, CAD/SM 공정이 가장 많은 전기를 소비하며, coating, printing, steaming, washing, drying 공정순서로 기여한다.

5.1 주요 환경 이슈의 규명

디지털날염시스템의 영향범주별 환경이슈는 다음과 같다.

- 기본공장의 경우 물질제조단계와 S/O제작단계 순으로 높게 나타났으며 그 원인은 원단과 전기 에 의한 Natural gas와 Hard coal에 의한 영향이 대부분인 것으로 조사되었다.
- 지구온난화의 경우 이산화탄소가 원인 물질이었으며 S/O제작 단계의 전기 제조에 의한 영향이 가장 높게 나타났으며, 그 다음이 물질제조단계 의 원단으로 의한 영향으로 나타났다.
- 오존층파괴의 경우 99.9% 이상이 Halon1301에 의한 것으로 조사되었으며 이는 수송단계의 항공 수송에 의한 것으로 조사되었다.
- 산성화의 경우 대부분의 환경영향은 SO2와 NO2에 의한 것으로 조사되었으며 물질제조단계 의 원단과 S/O제작단계의 전기에 의한 것으로 조사되었다.
- 부영양화의 경우 대부분의 환경영향은 Nitrate와 Phosphate에 의한 것으로 조사되었으며 물질제 조제단계의 원단에 의한 것으로 조사되었다.
- 광화학적산화물 생성의 경우 전기의 원단에 의한 VOC 발생이 원인인 것으로 조사되었다.
- 인간독성의 경우 물질제조단계의 원단과 수송단계의 항공수송에 의한 PAH가 원인인 것으로 조사되었다. 이 밖에도 Dust와 NO2, 나메 등이 영향을 미치고 있다.
- 자성독성의 경우 물질제조단계의 원단에 의한 바나듐과 수은에 의한 것으로 조사되었다.
- 수계독성의 경우 대부분의 영향은 물질제조단계 의 원단에서 발생되는 Nickel이 그 원인인 것으로 조사되었다.
- 각 영향범주별 특성화를 수행한 결과 물질제조단 계의 원단과 S/O제작단계의 전기, 수송단계의 항공수송이 주요 원인인 것으로 조사되었다.
- 디지털날염시스템의 환경이슈도 도출된 항공수송 의 물질별 기여도를 분석해 보면, 요소가 가장 큰 영향을 미치며, surfactant와 NaHCO3 그리
고 임크의 순서로 기여한다.

![Fig. 4 디지털날염의 원단 제외한 수중물질별 영향](image)

- 디지털날염시스템의 환경이슈로 도출된 S/O 제작단계의 전기의 공정의 기여도를 분석해 보며, CAD/SM 공정이 가장 많은 전기를 소비하며, coating, printing, steaming, washing, drying, 공정순서로 기여한다.

![Fig. 5 디지털날염의 원단 제외한 공정별 전기 영향](image)

5.2.1 데이터의 완전성

완전성은 본 연구 대상제품시스템에 포함된 실비내지는 제품생산량과 전체를 고려할 수 있는지를 정량적으로 나타낼 수 있는 항목이다. 이 항목은 연구목적에 맞게 데이터가 수렴되었으며 대표성을 가지고 있는지를 판단할 수 있도록 해주는 지표로서, 데이터의 점을 정결하기 위한 목적을 갖는다. 우선 두 납염시스템을 이용한 S/O제작 시 필요한 모든 물질에 대한 데이터를 수집하고자 하였으며, 내부공정의 경우 현재 운전 중인 두 납염시스템 현장에서 데이터를 수집하였다. 다만 아니라 각 물질에 대한 해양 및 항공, 육로 수송을 모두 고려하였다.

두 납염시스템에 대한 비교 전과공정을 감안하여 내부 단위공정에 대한 데이터를 수집할 때, 데이터 누락이 없도록 교차 정절하였다.

5.2.2 접근 방법론의 일관성

본 연구에서는 데이터의 품질관리, 데이터수집방법, 데이터기반, 데이터관리방법 등 접근방법론의 일반성을 추구함으로써 두 납염시스템간의 동등성을 확보하고 전체 연구결과의 품질을 향상시키는데 기여하였다.

- 데이터의 품질관리: 시간적 범위를 설정하는데 있어 전과공정단계별 단위공정 및 데이터를 적용할 시에는 설정된 디자인에 대한 1차 데이터를 수집하기 위해 실제 S/O제작 과정 동안 데이터를 수집하였으며, 2차 데이터를 적용할 경우에는 최신의 데이터를 적용하도록 하였다.
- 데이터수집방법: 일관된 데이터수집 및 계산을 지원하기 위하여 데이터 수집 및 문서화 양식을 두 납염시스템에 대하여 일관되게 적용하였다. 단, 2차 데이터를 사용한 데이터조작법 및 수동장태와 S/O제작단계의 경우 LCI 데이터를 활용함에 따라 동일한 문서화 양식을 적용하는 데에는 한
계가 있었다. 단, 데이터베이스 활용 시 데이터베이스에 대한 시간적, 공간적, 기술적 등이 고려되었다.
- 데이터베이스: 전과정에 걸쳐 수집한 모든 데이터를 통합된 파라미터 명명법을 적용하기 위하여 원료물질, 에너지, 대기배출물, 수계배출물, 고형폐기물 등 데이터베이스 별 용어집을 마련하여 이를 적용할 수 있도록 하였다. 단 2차 데이터를 적용할 경우에는 전과정평가 S/W Coding 시 직접한 파라미터 전환을 시도함으로써 전자 제품시스템에 데이터베이스의 일관성을 기하도록 하였다.
- 데이터계산방법: 1차 데이터를 적용할 경우, 3개 디자인에 대한 두 납품시스템의 데이터수집 결과 및 산출근거를 구체적으로 기술하였다.

III. 전략적 활용방안

앞서 규정한 주요 환경 이슈에 대해 환경 영향을 줄이기 위한 구체적인 대책 시나리오를 적용해 보고, 정량적인 환경 개선 효과를 LCA 분석을 통해 도출해 내었다. 또한 전략적 활용 방안으로서 EMS와의 연계, 환경 친화적 제품 설계 측면에서 본 디지털 심유 납품시스템의 개선 가능성, 환경 보고서를 작성 등 다양한 활용 방안에 대해 살펴보았다.

1. 환경개선 시나리오 적용

1.1 해외 수출 거리 변화에 따른 환경 영향 비교

디지털 납업 시스템에 대한 전과정 영향평가 수행 결과 수송단계에서 항공수송에 의한 영향이 대부분인 것으로 분석되었다. 이는 디지털 납업 시스템에서 사용하는 약물이 해외에서 항공 수송되기 때문인 것이다. 따라서 수송단계의 환경영향을 개선하기 위한 아시아에서 항공수송을 해양과 육로수송으로 대체하여 그 개선 정도를 파악해 보기로 하였다. 우선 모든 영향주에 대하여 수송방식 변경 시 변화 정도를 분석해 본 결과 항공수송은 해양수송으로 변경하였을 때 인간독성과 오존층파괴에 가장 큰 변화를 보였다.

| Table 7. 수송 변경 시 디지털 납업의 영향평가 결과 값의 변화 |
|---|---|---|---|---|
| | | | | |
| 해외수출 | 수송방식 | 수송방식 | 수송방식 | 수송방식 |
| 해외수출 | | | | |

따라서 두 영향주에 대하여 항공수송을 해양수송으로 다시 육로수송으로 변경해 볼으써 추후 디지털 납업 시스템의 환경 개선에 대한 기회를 확인하고자 하였다. 이러한 시나리오는 해양수송이 육로수송에 비해 좀 더 현실 가능하다는 차원에 의한 것이다.

Fig. 6 수송 변경 시 디지털 납업의 1차 S/O 오존층 파괴 분석 그래프

위의 표와 그림에서 알 수 있듯이 오존층파괴의 경우 항공수송을 해양수송으로 변경하였을 때 수송단계의 환경영향이 현저히 감소한 것을 알 수 있다.
위의 결과에서 알 수 있듯이 인간독성의 항공 수송을 해양수송으로 변경하였음을 수송단계의 환경 영향이 현저히 감소한 것을 알 수 있다.

위의 결과에 따라 해외에서 항공 수송을 통해 수입하는 이 물질들을 점차 국산화 하여 국내에서 조달함으로써 국내 육로 수송으로 변경 시킬 수 있다. 수송 부분의 환경 영향을 크게 감소시킬 수 있다는 것을 확인할 수 있었다. 현재 요소와 NaHCO3, Surfactant에 대한 국산품 대체 방안을 수립 중이며, 잉크 또한 국산화를 시도함으로써 나노 잉크 개발을 추진 중이다.

1.2 나노 잉크 사용에 따른 환경영향 평가

디지털 낙염 시스템은 폐수와 폐기물 발생이 거의 없는 환경친화적 고부가가치 제품인 다목적 소량 생산을 위한 청정 생산 기술로서 산업자원부의 유무 산업 10대 전략 기술로 인정 되어 항후 정부의 주도적 지원이 기대된다. 이러한 청정생산기술 개발과 가속화시키기 위한 것으로서 DTP 나노 청정기술센터에 있는 건축과 공원이 필요한 나노 잉크를 개발하고 있다.

따라서 본 연구에서는 현재의 일반 잉크 대신 나노 잉크를 사용했을 때의 환경영향 감소 정도를 분석하고자 하였다. CAD/LIP 공정과 Printing공정을 제외한 모든 전후처리 공정이 제외되었으며 그 이외의 모든 조건은 기존과 동일하게 적용하였다.

위의 결과에서 알 수 있듯이 기존의 일반 잉크를 사용했을 때 비해 모든 영향범주에서 영향이 감소한 것을 알 수 있다. 특히 오존상파괴와 인간독성의 경우 해외에서 항공 수송은 물질이 제외됨에 따라 그 감소율이 다 양항법주에 비해 큰 것을 알 수 있다. 그리고 다른 영향범주도 전기 사용량이나 재활 공정의 쓰레기 제외됨으로 인해 그 영향이 감소되었다.

기존 낙염 업체가 조속히 디지털 낙염 시스템 솔루션을 도입하여 설비를 교체 할 경우 전후처리 공정이 불필요하게 될 것이다. 이는 환경 친화적 제품 생산은 물론이고 경제적으로도 다음과 같은 매우 많은 개선 효과를 볼 수 있다.

1) 제조 공정과 생산 기간 단축으로 원가 절감.
2) 출력물 정량 생산으로 불필요한 재고 대량 발생 방지.
3) 원/부자재 대량 소요 방지.
4) 에너지/물 대량 사용 방지.
5)로/건물 대량 소요 방지.
6) 지점급 노동집약적 인력 과다 소요 방지.
7) 폐수/폐기물 대량 발생 방지.

나노 잉크 사용에 따른 환경영향 분석의 경우 나노 잉크 사용에 의해 추가적으로 고려되어야 하는 잉크의 성분 그리고 그로 인한 폐수 성분 등이 고려되지 않은 한계가 있기 때문에 추후 나노 잉크에 대한 구체적인 제품의 성분 및 환경적 특성이 규명되다면 좋
다 정확한 결과를 도출할 수 있을 것이다.

IV. 결론

디지털납염 대비 기존납염의 비교 LCA 연구는, 지금까지 국내 대기업에서 수행했던 기술 집적적 고부가 가치 제품이나 수출 전략적 제품은 아니지만 일반 생산용품부에서 국내에서는 처음으로 LCA 수행을 했는데 큰 의미를 부여할 수 있으며 또한 환경성과 경제성 개선을 동시에 추구하는 Eco-Efficiency 실현에 큰 의미가 있을 것으로 생각된다. 본 비교 LCA 수행 결과는 환경 친화적인 납염제품 생산을 위한 기존 및 디지털 납염 시스템의 운용에 활용할 수 있으며, 기존 납염 공정은 폴리에스터의 폐기물과 프린팅 전처리 후 다양한 전처리료의 폐수 배출 등에 개선 방안에 활용하고 DTP 공정은 전처리 코팅 약물 및 심유에 직접 프린팅 후의 세척 공정 등이 개선이 될 수 있으며, 향후 전/후 처리가 필요 없는 잉크 개발이 완료 되면 영향 결과는 보다 큰 폭으로 감소할 것으로 예상된다. 기존납염과 디지털납염의 비교 과정평가는 환경적으로나 경제적으로 많은 어려움을 겪고 있는 국내 납염산업계에 대안이 될 수 있을 것으로 생각되며 현재 진행중인 나노 잉크 개발은 더욱 환경친화적이며 경제성을 동시에 추구하는 우리나라 심유산업이 청정생산 및 고부가가치제품생산으로 한 단계 발전 할 수 있는 제기가 될 수 있을 것이 다.

참고문헌

2) 첨단 영색가공소재 기술개발 전략수립에 관한 연구, 영색기술연구소 보고서
3) "납염기법", 신중규, 형성출판사, pp. 229-236
5) ISO 14041 : Life Cycle Assessment - Goal and Scope Definition and Inventory Analysis, 1998
7) Principles of Life Cycle Assessment', 허락, 안중우, 정재충 공저, 1995
8) Life Cycle Inventories for Packaging, Published by SAEFL Berne, 1998
13) Life Cycle Inventories for Packagings, Published by SAEFL Berne, 1998